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   Context 

 We have been developing reporting systems for 
problem solving which are helping to measure 
how strategically students are thinking about 
scienti fi c problems and whether interventions to 
improve this learning are having the desired 
effect. The system is termed IMMEX (Interactive 
MultiMedia Exercises), and is an online library 
of problem solving science simulations coupled 
with layers of probabilistic tools for assessing 
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  Abstract 

 Learning trajectories have been developed for 1650 students who solved a 
series of online chemistry problem solving simulations using quantitative 
measures of the ef fi ciency and the effectiveness of their problem solving 
approaches. These analyses showed that the poorer problem solvers, as 
determined by item response theory analysis, were modifying their strate-
gic ef fi ciency as rapidly as the better students, but did not converge on 
effective outcomes. This trend was also observed at the classroom level 
with the more successful classes simultaneously improving both their 
problem solving ef fi ciency and effectiveness. A strong teacher effect was 
observed, with multiple classes of the same teacher showing consistently 
high or low problem solving performance. 

 The analytic approach was then used to better understand how interven-
tions designed to improve problem solving exerted their effects. Placing 
students in collaborative groups increased both the ef fi ciency and effec-
tiveness of the problem solving process, while providing pedagogical text 
messages increased problem solving effectiveness, but at the expense of 
problem solving ef fi ciency.      
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students’ problem solving performance, progress, 
and retention (Soller & Stevens,  2007 ; Stevens & 
Palacio-Cayetano,  2003 ; Stevens, Soller, Cooper, 
& Sprang,  2004 ; Stevens, Wang, & Lopo,  1996 ; 
Cooper, Cox, Nammouz, Case, & Stevens,  2008 ; 
Thadani, Stevens, & Tao,  2009  ) . 

 IMMEX problems are what Frederiksen  (  1984  )  
referred to as “structured problems requiring produc-
tive thinking,” meaning they can be solved through 
multiple approaches, and students cannot rely on 
known algorithms to decide which resources are 
relevant and how the resources should be used. 
IMMEX problems are rich in cognitive experi-
ences with over 90% of the utterances of students 
when solving a series of cases being cognitive or 
metacognitive in nature (Chung et al.,  2002 ), and 
is an environment where instruction can be varied 
and the effects of different interventions tested. 

 IMMEX supports detailed assessments of stu-
dents’ overall problem solving effectiveness and 
ef fi ciency by combining solution frequencies (or 
IRT estimates) which are outcome measures and 
arti fi cial neural network (ANN) and hidden Markov 
modeling (HMM) performance classi fi cations 
which provide a strategic dimension (Stevens, 
 2007 ; Stevens & Thadani,  2007 ; Stevens & 
Casillas,  2006  )  To simplify reporting and to make 
the models more accessible for teachers, these lay-
ers of data can be combined into an economics-
derived approach which considers students’ 
problem solving decisions in terms of the resources 
available (what information can be gained) and the 
costs of obtaining the information. 

 Extensive prior research has shown that stu-
dents vary widely in how systematically and 
effectively they approach IMMEX problems 
(Stevens et al.,  2004 ; Soller & Stevens,  2007 ). 
Some students carefully and systematically look 
for information sources that are appropriate for 
the current case, keep track of the information 
that they are accessing, and answer when the 
information they have reviewed is suf fi cient to 
support the answer, whereas other students are 
less systematic, often reinspecting information 
they have already viewed (Stevens & Thadani, 
 2007 ; Soller & Stevens,  2007  ) . In this regard, 
IMMEX performances are re fl ections of stu-
dents’ ability (i.e., effectiveness) as well as their 
regulation of cognition (i.e., ef fi ciency). 

 Students who review all available problem 
resources are not being very ef fi cient, although 
they might eventually  fi nd enough information to 
arrive at the right answer. Other students might not 
look at enough resources to  fi nd the information 
required to solve the problem, i.e., they are being 
ef fi cient but at the cost of being ineffective. Students 
demonstrating high strategic ef fi ciency should 
make the most effective problem solving decisions 
using the fewest number of the resources available. 
As problem solving skills are gained this should be 
re fl ected as a process of resource reduction (i.e., 
higher ef fi ciency) and improved outcomes (greater 
effectiveness) (Haider & Frensch,  1996  ) . 

 Dissecting problem solving along these two 
dimensions provides an opportunity to detail how 
classroom practices like collaborative learning or 
the provision of pedagogical or metacognitive 
prompts can in fl uence problem solving outcomes. 
Do they equally affect the ef fi ciency and effec-
tiveness of the problem solving process or are 
there differential effects? This is the framing 
question for this study.  

   Theoretical Background 

 Most theoretical frameworks for metacognition 
identify two major components: knowledge of 
cognition (declarative and procedural knowledge) 
and regulation of cognition (or executive compo-
nent) (Schraw,  2001 ; Schraw, Brooks, & Crippen, 
 2005 ; Schraw, Crippen, & Hartley,  2006  ) . The for-
mer is often understood as metacognitive aware-
ness and has received considerably more attention 
than the regulation of cognition, which comprises 
the repertoire of actions in which an individual 
engages while performing a task. Consistent with 
this framework, metacognition occurs when indi-
viduals plan, monitor, and evaluate their own 
cognitive behavior in a learning environment or 
problem space (Ayersman,  1995  ) . 

 Despite its importance, the study of metacog-
nition has been slowed by the lack of simple, 
rapid, and automated assessment tools. Technology-
based learning environments  provide the founda-
tion for a new era of integrated, learning-centered 
assessment systems (Quellmalz & Pellegrino, 
 2009  ) . It is now becoming possible to rapidly 
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acquire data about students’ changing knowledge, 
skill and understanding as they engage in real-
world complex problem solving, and to create 
predictive models of their performance both 
within problems (   Murray & VanLehn,  2000  )  as 
well as across problems and domains (Stevens 
et al.,  2004  ) . A range of analytic tools are being 
applied in these analyses including Bayesian Nets 
(Mislevy, Almond, Yan, & Steinberg,  1999  ) , 
computer adaptive testing based on item response 
theory (IRT) (Linacre,  2004  ) , and regression 
models and arti fi cial neural networks (ANN) 
(Beal, Mitra, & Cohen,  2007 ; Soller & Stevens, 
 2007  ) , each of which possesses particular 
strengths and limitations (Williamson, Mislevy, 
& Bejar,  2006  ) . 

 How can this data be best put to use? A pro-
posed model for improving problem solving 
approaches is shown in Fig.  27.1  and is based 
along two dimensions: (1) Teacher professional 
development and classroom practice and (2) 
direct student feedback.  

 Recent analyses of traditional assessment 
approaches and professional development mod-
els indicate that interventions often fail because 
teachers either do not fully understand how to 
implement them, or are not adequately supported 
in their efforts to implement them (Desimone, 
 2002 ; Lawless & Pellegrino,  2007 ; Spillane, 
Reiser, & Reimer,  2002  ) . Simply increasing 
teachers’ access to assessment data, however, 
may only exacerbate the challenges that they face 
in crowded classrooms when adapting instruc-
tion. Thus, new approaches are needed to provide 
teachers with accurate, predictive, and useful data 
about their students’ learning in ways that are 
easily and rapidly understood. Data available in 
real time that speak to process as well as outcomes 
and that are intuitively easy to understand would 
seem to be minimum requirements. 

 Finding the optimum granular and temporal 
resolutions for reporting this assessment data will 
be a fundamental challenge for making the data 
accessible, understandable and useful for a 

  Fig. 27.1    Proposed approaches for improving student’s problem solving skills       
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diverse audience (e.g., teachers, policy makers 
and students) as each may have different needs 
across these dimensions (Alberts,  2009 ; Loehle, 
 2009 ). If the model resolution is general and/or 
delayed then important dynamics of learning may 
be lost or disguised for teachers. If the resolution 
is too complex or the reporting too frequent the 
analysis will become intrusive and cumbersome. 

 Teachers however are only one side of the 
learning equation; we need to consider students 
as well. Overall, prior research suggests that stu-
dents’ undirected problem solving in science 
domains tends to be relatively unsystematic, and 
that students are often unselective with regard to 
the evidence that is collected and considered. 
Students’ dif fi culties with problem solving can be 
especially evident in technology-based learning 
environments, which often require careful plan-
ning and progress monitoring to use effectively 
(Schauble,  1990 ; Stark, Mandl, Gruber, & Renkl, 
 1999  ) . When students can readily explore multi-
ple sources of information and experiment with 
different combinations of factors, they can easily 
become distracted from the primary objective of 
using the information to solve the problem. 

 One approach to improving students’ problem 
solving is to link the technology-based activity with 
classroom activities designed to help students adopt 
good problem solving strategies and help monitor 
their progress. Such activities would remind stu-
dents to make sure that the goal of the problem is 
clearly understood, identify the information that 
will be most helpful in solving the problem, and 
monitor their progress towards the solution. 
Adapting this approach, Schwarz and White ( 2005 ) 
found that students improved in their understand-
ing of the role of models in scienti fi c problem solv-
ing when the computer-based activity of designing 
models was enhanced with a classroom-based 
 curriculum. Although the results were encourag-
ing, one limitation was that the program was quite 
intensive, involving 10 weeks of classroom activi-
ties and support from university researchers. Thus, 
the curriculum-embedded approach might be 
dif fi cult for many science teachers to implement on 
their own, given limited resources and constraints 
on classroom science activities.  

   Task and Analytic Approaches 

 The architecture of IMMEX contains a series of 
tasks, a student management and organization 
system, a data warehouse and an analytic model-
ing and reporting module. One IMMEX task is 
called  Hazmat , which provides evidence of a stu-
dent’s ability to conduct qualitative chemical 
analyses. The problem begins with a multimedia 
presentation, explaining that an earthquake caused 
a chemical spill in the stockroom and the student’s 
challenge is to identify the chemical. The problem 
space contains 22 menu items for accessing a 
Library of terms, the Stockroom Inventory, or for 
performing Physical or Chemical Testing. When 
the student selects a menu item, she veri fi es the 
test requested and is then shown a presentation of 
the test results (e.g., a precipitate forms in the liq-
uid). Students continue to gather the information 
they need to identify the unknown chemical so 
they can solve the problem (Fig.  27.2 ).  

  Hazmat  contains 38 problem cases which 
involve the same basic scenario but vary in 
dif fi culty due to the properties of the different 
unknown compounds being studied. These mul-
tiple instances provide many opportunities for 
students to practice their problem solving and 
also provide data for Item Response Theory (IRT) 
estimates of problem solving ability which can 
be useful for comparing outcomes with more tra-
ditional ability measures such as grades. 

 IMMEX also supports detailed analyses of 
students’ overall problem solving effectiveness 
and ef fi ciency by combining outcome measures 
like IRT (as a measure of overall problem solving 
ability), and ANN (as a measure of problem solv-
ing strategy) and hidden Markov modeling 
(HMM) classi fi cations (which provide a predic-
tive measure of problem solving progress). 
Sample visualizations of these formats are shown 
in Fig.  27.3 . This layered analytical approach has 
been very useful from a research perspective for 
distinguishing gender differences in problem 
solving approaches (Soller & Stevens,  2007 ) and 
documenting the effects of collaborative groups 
during problem solving (Cooper et al.,  2008  ) .  
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  Fig. 27.2     HAZMAT.  This screen shot of  Hazmat  shows the test items available (Library, Physical Tests, Chemical 
Tests) on the  left side  of the screen and a sample test result of a conductivity reaction in the  center        

 We have combined the measures shown in 
Fig.  27.3  to simplify reporting using an econom-
ics-inspired approach which considers students’ 
problem solving decisions in terms of the 
resources available (what information can be 
gained) and the costs of obtaining the informa-
tion (Stevens & Thadani,  2007  ) . 

 The strategy used (or the ef fi ciency of the 
approach) is described by arti fi cial neural network 
analysis which is a classi fi cation system. In this 
system, the arti fi cial neural network’s observation 
(input) vectors describe sequences of individual 
student actions during problem solving (e.g., 
Run_Red_Litmus_Test, Study_Periodic_Table, 
Reaction_with_Silver_Nitrate). The neural network 
then orders its nodes according to the structure of 

the data. The distance between the nodes after the 
reordering describes the degree of similarity 
between students’ problem solving strategies. For 
example, the neural networks identi fi ed situations 
in which students applied ineffective strategies, 
such as running a large number of chemical and 
physical tests, or not consulting the glossaries and 
background information. 

 The neural networks also identi fi ed effective 
problem solving strategies such as selecting a 
variety of applicable tests while also consulting 
background information. This method is able to 
identify other domain-speci fi c problem-speci fi c 
strategies such as repeatedly selecting speci fi c 
tests (e.g.,  fl ame or litmus tests) when presented 
with compounds involving hydroxides (Stevens 
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et al.,  2004  ) . Figure  27.4  (left) shows one ANN 
node in a 36-node network that was constructed 
from 5,284 performances of university and high 
school chemistry students. Figure  27.4  (right) 
shows the entire 36-node network representing 
the 36 different problem solving strategies used 
by the students. Each node of the network is rep-
resented by a histogram showing the frequency 
of items selected by students. For example, there 
were 22 tests related to Background Information 
(items 2–9), Flame Tests, Solubility and 
Conductivity (items 9–13), Litmus tests (items 
14, 15), Acid and Base Reactivity (items 16, 17), 
and Precipitation Reactions (items 18–22).  

 Student performances that were grouped 
together at a particular node represented problem 
solving strategies adopted by students who 
always selected the same tests (i.e., those with a 
frequency of 1). For instance, all Node 15 perfor-
mances shown in the left-hand side of Fig.  27.5  
contain the items 1 (Prologue) and 11 (Flame 
Test). Items 5, 6, 10, 13, 14, 15, and 18 have a 
selection frequency of 60–80%, meaning that any 
individual student performance that falls within 
that node would most likely contain some of 
those items. Items with a selection frequency of 
10–30% were regarded more as background noise 
than signi fi cant contributors to the strategy repre-
sented by that node.  

 The topology of the trained neural network 
provides information about the variety of differ-
ent strategic approaches that students apply in 
solving IMMEX problems. First, it is not surpris-
ing that a topology is developed based on the 
quantity of items that students select. The upper 
right hand of the map (nodes 6, 12) represents 
strategies where a large number of tests are being 
ordered, whereas the lower left contains clusters 
of strategies where few tests are being ordered. 
There are also differences that reveal the quality 
of information that students use to solve the prob-
lems. Nodes situated in the lower right hand cor-
ner of Fig.  27.4  (nodes 29, 30, 34, 35, 36) 
represent strategies in which students selected a 
large number of items, but no longer needed to 
reference the Background Information (items 2–9). 
The classi fi cations developed by ANN therefore 
re fl ect how students perceive the problem space, 

and are regulating their test selections in response 
to these perceptions. 

 While ANN nodal classi fi cations provide a 
snapshot of what a student did on a particular 
performance, it would be instructionally more 
helpful if it were possible to automatically track 
and report changes in strategy over time. In order 
to generate a time series that could potentially be 
predictive of future work, a series of these per-
formances must be grouped together and 
classi fi ed by another type a classi fi er, in our case, 
a hidden Markov modeling technique. Similar to 
the training of the arti fi cial neural network 
classi fi er a training set of hundreds/thousands of 
sequences of student performances are used for 
training where students performed 4–10  Hazmat  
cases. This training results in HMM model 
classi fi ers which can categorize future sequences 
of performances. 

 Figure  27.5  shows the results of such training 
and illustrates a fundamental component of 
IMMEX problem solving: individuals who per-
form a series of these simulations stabilize with 
preferred strategies after 2–4 problem instances. 
This data shows hidden Markov models of the 
problem solving strategies of 1,790 students who 
performed seven of the  Hazmat  simulations. 
Many students began their problem solving with 
a limited (these are termed State 1 strategies) or 
extensive search (State 3) of the problem space. 
These designations arise from the association of 
certain ANN nodal classi fi cations with different 
HMM States. With practice, these strategies 
decreased and they became more ef fi cient and 
effective (States 4 and 5). 

 These characterizations help in determining 
which students may be guessing, failing to evalu-
ate their processes, or randomly selecting items, 
i.e., issues with metacognition. Several advantages 
of this concurrent assessment include high auto-
mation and time ef fi ciency, minimal susceptibility 
to researcher’s bias, and a more naturalistic problem 
solving setting. As described below, this type of 
analysis can be further collapsed into three descrip-
tors to identify metacognitive levels: high, inter-
mediate, and low metacognition use for 
comparisons with other metacognitive metrics 
(Cooper et al.,  2008  ) . 
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  Fig. 27.4    Neural network performance patterns. The 36 
Neural network nodes are represented by a 6 × 6 grid of 36 
graphs. The nodes are numbered 1 through 36 left-to-right 
and top-to-bottom; for example,  the top row  is comprised 
of nodes 1 through 6. As the neural network is iteratively 
trained, the performances are automatically grouped into 

these 36 nodes so that each node represents a different gen-
eralized problem solving strategy. These 36 classi fi cations 
are observable descriptive classes that can serve as input to 
a test-level scoring process or linked to other measures of 
student achievement or cognition. They may also be used 
to construct immediate or delayed feedback to the student       

  Fig. 27.5    Modeling individual and group learning trajec-
tories. This  fi gure illustrates the strategic changes as indi-
vidual students or groups of students gain experience in 
 Hazmat  problem solving. Each  stacked bar  shows the dis-
tribution of HMM states for the students ( N  = 1,790) after 
a series (1–7) of performances. These states are also 
mapped back to the 6 × 6 matrices which represent 36 dif-
ferent strategy groups identi fi ed by self-organizing ANN. 

The  highlighted boxes  in each neural network map indi-
cate which strategies are most frequently associated with 
each State. From the values showing high cyclic probabilities 
along the diagonal of the HMM transition matrix ( upper 
right ), States 1, 4, and 5 appear stable, suggesting once 
adopted, they are continually used. In contrast, students 
adopting State 2 and 3 strategies are more likely to adopt 
other strategies ( gray boxes )       
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 Figure  27.5  also illustrates how modi fi cations 
to instruction can shift the dynamics of repetitive 
problem solving. The series of histograms in the 
right of this  fi gure show that students in collab-
orative groups stabilize their strategies more rap-
idly than individuals and there are fewer 
performances where extensive searching occurs 
(i.e., State 3 strategies).  

   Learning Trajectories and Effects of 
Metacognition-Linked Interventions 

 The data gathered as students work with IMMEX 
provide rich, real-time assessment information 
along the ef fi ciency and effectiveness dimen-
sions. Figure  27.6  shows a modeling across 
schools and teachers/classrooms (66 classrooms, 
62,774 performances) where an index of strategic 
ef fi ciency is plotted against an effectiveness 
(i.e., solution frequency) rate. The quadrants 
generated by intersections of the averages of 
these measures re fl ect (1) mostly guessing (upper 
left corner), (2) performances where students 
view many resources, but miss the solution (lower 
left), (3) performances where many resources are 

being viewed and the problem is being solved 
(lower right) and (4) the performances where few 
resources are used and the problem is solved 
(upper right). As expected by the visualization 
format, schools are distributed across the quad-
rants (Fig.  27.6 , left). A second level of analysis 
showing problem solving performance across 
 fi ve teachers as well as their classrooms where 
the different classes of the same teacher are 
shown by the symbols, and the different teachers 
identi fi ed by numbers (Fig.  27.6 , right). The clus-
tering of the different classrooms of the teachers 
(for instance, the +’s in the lover left hand corner 
and the squares in the upper right corner), illus-
trates a signi fi cant teacher effect perhaps 
re fl ecting different instructional methods 
(Zimmerman,  2007  ) . Follow-up classroom obser-
vation studies by Thadani et al.,  (  2009  )  suggest 
that the teacher’s mental model of the problem 
space, and approach for solving the problem, can 
have a major effect on the approach adopted by 
the students.  

 Tracking problem solving ef fi ciency and 
effectiveness as multiple  Hazmat  problems are 
performed creates a learning trajectory (Fig.  27.7 ) 
which is an important formative assessment tool 

  Fig. 27.6    Aggregated ef fi ciency and effectiveness mea-
sures of schools and classrooms that performed  Hazmat . The 
dataset was aggregated by schools ( left ) and then by teachers 
( symbols and text ) and classrooms ( right ) and the ef fi ciency 
(on a scale of 0–6) and effectiveness (on a scale of 0–2) mea-

sures calculated as described earlier. The symbol sizes are 
proportional to the number of performances. Each axis in ( a ) 
is bisected by  dotted lines  indicating the average ef fi ciency 
and effectiveness measures of the dataset creating quadrant 
combinations of high and low ef fi ciency and effectiveness       
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showing how students improve with practice 
(Lajoie,  2003  ) . Learning trajectories show that 
the poorer problem solvers, as determined by IRT 
analysis, are modifying their strategic ef fi ciency 
as rapidly as the better students, as shown by the 
position changes along the Ef fi ciency axis, but 
they are not converging on effective outcomes 
(Fig.  27.7a ). Figure  27.7b  shows that this trend 
can be observed in classrooms as well, (e.g., 
Class 1). While the more successful classes (e.g., 
Class 4) simultaneously improved both their 
problem solving ef fi ciency and effectiveness, the 
lower performing classes showed gains only in 
ef fi ciency The learning trajectories are also 
important as changes in problem solving progress 
can be detected after as few as two to four student 
performances providing an opportunity for inter-
vention before poor approaches have been 
learned. For instance, a teacher could initiate an 
intervention with a smaller group of students and 
after they have performed part of their assign-
ment the teacher can observe online whether this 
was having a positive, negative or neutral effect 
and either continue or modify the intervention.  

 A similar analysis was conducted for 80 
 students in three Advanced Placement Chemistry 
classes who were separated into the upper and 
lower halves based on their  fi nal course grades. 
Again, the learning trajectories of the lower half 
of the students showed similar increases in strate-
gic ef fi ciency as the upper half of the students, 
but remained lower in effectiveness. (The corre-
lations between the  fi nal grades and the ef fi ciency 
index, ability estimates by IRT, and the solved 
rates (i.e., effectiveness) were R2 = 0.06,  p  = 0.02, 
R2 = 0.006,  p  = 0.49, R2 = 0.02,  p  = 0.23)   . 

 Thus from the perspectives of problem solving 
abilities, course grades, and perhaps the instruc-
tional environment it would appear that some stu-
dents are differentially struggling with the 
ef fi ciency versus effectiveness aspects of problem 
solving a that interventions designed to improve 
these skills may be useful; the question is, which 
intervention will work with which ef fi ciency/
effectiveness dimension? From a formative 
assessment perspective learning trajectories can 
provide evidence as to whether interventions 
adopted to improve learning are working. 

  Fig. 27.7    Learning trajectories of classes and students of 
different abilities. ( a ) The dataset ( n  = 62,774) was divided 
into lower (IRT scores = 3.4–49.3) and higher (IRT 
scores = 49.4–60.3)  Hazmat  problem solving ability stu-
dents and the learning trajectories plotted. ( b ) The 
Ef fi ciency/Effectiveness measures are stepwise plotted 

for seven  Hazmat  performances for four representative 
classes. ( c ) A dataset (82 students, 780  Hazmat  perfor-
mances) for three Advanced Placement Chemistry classes 
was divided into high and low categories based on the 
 fi nal course grade and the learning trajectories calculated       
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 One such approach is to integrate guidance 
about problem solving directly into the technol-
ogy-based learning environment. Such guidance 
may include the types of suggestions and prompts 
about the metacognitive aspects of good prob-
lem solving that have been associated with effec-
tive teacher implementation and skilled 
instruction from expert human tutors. More 
speci fi cally, good problem solvers do more than 
apply known procedures to familiar problems. 
Rather, they consider carefully the nature of the 
problem before starting to work, plan an appro-
priate approach, implement the plan, and con-
tinually evaluate progress towards the solution 
(Cooper & Sandi-Urena,  2009 ; Swanson,  1990 ). 
Good problem solvers also recognize that 
dif fi cult problems may require time and effort to 
solve, and that some “moments in the dark” are 
to be expected during the problem solving pro-
cess. If the kinds of metacognitive guidance pro-
vided by skilled teachers could be integrated 
directly into simulation learning environments, 
then we might expect to  fi nd students adopting 
better strategies. 

 The bene fi ts of individualized instruction 
have been well documented in studies of expert 
human tutors, in terms of enhanced learning out-
comes for novices (Lepper, Woolverton, Mumme, 
& Gurtner,  1993  ) . The bene fi ts of individualized 
instruction have also been documented in the 
context of Intelligent Tutoring Systems (ITS) 
software for mathematics instruction (Anderson, 
Carter, & Koedinger,  2000 ; Heffernan & 
Koedinger,  2002 ; Koedinger, Corbett, Ritter, & 
Shapiro,  2000  ) . Moreno and Duran ( 2004 ) found 
that students who received guidance while work-
ing in a discovery-based simulation showed 
stronger posttest performance and higher trans-
fer rates than students who did not receive guid-
ance. Studies of ITS have also indicated that 
students who seek out and use multimedia 
resources show stronger learning outcomes than 
students who do not use the instructional 
resources (Walles, Beal, Arroyo, & Woolf,  2005  ) . 
While in the past ITS have primarily targeted the 
cognitive aspects of the student, they are increas-
ingly being expanded to contribute to the learn-
ers’ intrinsic motivation (   Conati & Zhao,  2004  ) . 

Within the development and study of student 
feedback, we wanted to  fi nd empirical evidence 
of how students use direct feedback from 
IMMEX to help them improve the way they 
problem solve. 

 The opposite pole to individual learning is 
collaborative learning. As tasks have become 
more complex and distributed, organizations have 
increasingly turned to the use of teams to share 
the effort and most have largely become team 
based. It is not surprising therefore that mastering 
teamwork is regarded as a cornerstone of twenty-
 fi rst century learning and  fi nding ways to improve 
communication and collaboration is an important 
area of research (Partnership for 21st Century 
Skills,  2013 ). Researchers have collected evi-
dence of metacognition development during 
 collaborative work and through the practice of 
collective metacognitive activities (Case, 
Gunstone, & Lewis,  2001 ; Georghiades,  2006 ). 
Hausmann, Chi, and Roy ( 2004 ) have extensively 
studied the bene fi ts that are associated with col-
laboration. Learning in dyads therefore would 
also seem like a useful potential intervention for 
measuring its’ effects on problem solving 
ef fi ciency and effectiveness. 

 The learning trajectory for students ( N  = 50,062 
performances, dotted line with open circle) who 
improved at their own pace is characterized by 
progressive improvement across both the 
ef fi ciency and effectiveness dimensions which 
begins to plateau after around four performances 
(Fig.  27.8 ). This plateau mirrors the stabilization 
of strategies and abilities we have previously 
documented using HMM and IRT (Stevens & 
Casillas,  2006 ; Stevens & Thadani,  2007  ) .  

 A second learning trajectory is from students 
who received text messages that were integrated 
into the prologue of each problem, i.e., before the 
student began actually working on the problem. 
( n  = 11,497 performances, dotted line with open 
square). They were speci fi cally designed to 
encourage students to re fl ect on their problem 
solving. The messages appeared during the 
Prologue of each  Hazmat  problem (i.e., during 
problem framing) and were randomly selected 
for each case from the message bank, with the 
restriction that a particular message would only 
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be shown once to an individual student. The mes-
sages suggested for example are as follows: 
“When you read the IMMEX problem, don’t let 
yourself rush into trying different things. Stop 
and think for a minute  fi rst.” What have you 
learned in science class that could help you iden-
tify the right place to start? 

 It is important to note that the scaffolding 
messages did not provide information about the 
science content that would help the student solve 
the problem. In fact, all the relevant science con-
tent information is already available in the case; 
the student’s task is to think about which infor-
mation might be most useful, that is, to be 
focused and selective. The scaffolding messages 
were designed to address problem solving as a 
process and to encourage students to focus on 
their actions and the goal of solving the problem 
(i.e., regulation), rather than to explore the sim-

ulation. Students who received the metacogni-
tive—directed hints became less ef fi cient, 
meaning that they looked at more problem mate-
rials, but they also became more effective prob-
lem solvers. 

 A control group of students ( n  = 1,215 per-
formances, dotted line with  fi lled circle) also 
received messages during the Prologue, but here 
the messages were designed to be generic aca-
demic advice (e.g., “It’s a good idea to keep up 
with the reading for your science class.”). These 
students became less ef fi cient as well as less 
effective. Thus, the message content was critical 
to improving students’ problem solving; the 
presence of text messages alone was not help-
ful. Finally, grouping students into pairs ( n  = 5,577 
performances, dotted line with  fi lled square), 
improved both the ef fi ciency as well as the 
effectiveness of the problem solving strategies.  

  Fig. 27.8     Hazmat  learning trajectories. The vertices of effectiveness and ef fi ciency were calculated for students in 
different intervention groups after each of eight ( sequentially numbered )  Hazmat  problem performances       
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   Discussion 

 The studies described have traced the changes in 
students’ problem solving ability (i.e., effective-
ness) as well as their regulation of their cognition 
(i.e., ef fi ciency) as they gained problem solving 
experience. They also showed the differential 
effects of interventions targeted to groups or indi-
viduals on these two problem solving dimen-
sions. The greatest positive effect on both 
ef fi ciency and effectiveness was gained by hav-
ing students perform simulations in groups. In a 
separate study, Case et al.  (  2007  )  have shown that 
these positive bene fi ts persisted when students 
were subsequently asked to solve additional 
problems on their own. 

 More recently Sandi-Urena et al. ( 2010 ) have 
shown that a non-related form of collaborative 
learning was suf fi cient to promote improved 
problem solving ability. Their intervention used a 
pretest/posttest experimental design. The inter-
vention was a three phase “problem solving” 
activity that involved neither a chemistry prob-
lem nor was it directly associated with the 
IMMEX assessment system or problem solving 
activities. The intervention took place over 
3 weeks. Phase one involved a small group col-
laborative problem solving activity and was 
designed to promote metacognition by the use of 
prompts and social interaction. The problems 
required students to sort through extraneous 
information and could not be solved by rote 
methods or without monitoring and evaluating 
their progress (core components of metacogni-
tive skillfulness). Phase two, where students 
solved another problem for homework, was 
designed to promote individual re fl ection, and 
phase three provided students with feedback and 
summaries of their activities. Students were asked 
to re fl ect on what they had learned during the 
process and what it meant for their approach to 
future problem solving activities. 

 A comparison of student performances before 
and after this intervention indicated that they 
used more ef fi cient strategies, and had higher 
problem solving ability after the intervention. 
Even thought there was no explicit link between 

the metacognitive intervention and the IMMEX 
problems, the intervention made students more 
likely to monitor and evaluate their progress 
though the problem, leading to increased prob-
lem solving ability. 

 The interventions targeted to individuals also 
shifted the shapes of learning trajectories. The 
inclusion of pedagogical messages or hints while 
the students were framing the problem showed 
different effects depending on the content of the 
messages. The messages that were designed with 
metacognition in mind improved the ability of 
the student to solve problems, but decreased the 
ef fi ciency of the process, e.g., they seemed to 
make the students more re fl ective or cautious. 
This was, in fact the goal of these messages, to 
foster improved cognitive regulation. The mes-
sages that were general study aids also had an 
effect on the students’ problem solving in that 
they decreased both the ef fi ciency and the effec-
tiveness of the problem solving, i.e., they were 
deleterious along both dimensions. While the 
possibility exists that they may have been a prob-
lem solving distraction for the students, given the 
magnitude of the effects we chose not include 
such messages in subsequent studies. 

 Recently these studies have been extended to 
middle school classrooms using an IMMEX prob-
lem set called  Duck Run  (   Beal & Stevens,  2011  ) . 
This is also a chemistry problem set where the 
prologue describes that an unknown substance has 
been illegally dumped into a local duck pond, pos-
sibly putting the local wildlife at risk. The stu-
dent’s task is to identify the substance so that it 
can be properly removed. Students who worked 
with the message-enhanced version were more 
likely to solve the problems and to use more effec-
tive problem solving strategies than students who 
worked with the original version. Bene fi ts of the 
messages were observed for students with rela-
tively poor problem solving skills, and for students 
who used exhaustive strategies. It would seem 
therefore that the bene fi cial effects of well-con-
structed messages immediately prior to problem 
solving are generalizable to multiple grade levels. 

 Combined these studies show that technology 
can provide dynamic models of what students 
are doing as they learn problem solving without 
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creating a burden on educational systems. While 
illustrated for chemistry, such models are appli-
cable to other problem solving systems where 
learning progress is tracked longitudinally. When 
shared with teachers and students in real time 
they can provide a roadmap for better instruction 
by highlighting problem solving processes and 
progress and documenting the effects of class-
room interventions and instructional modi fi cations. 
The differences observed across schools, teach-
ers, and student abilities shifts the focus to the 
classroom and may provide a means for matching 
students and instruction or matching teachers 
with professional development activities.      
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 The widespread use of advanced learning 
 technologies (ALTs) poses numerous challenges 
for learners of all ages. Learning with these non-
linear, multi-representational, open-ended learn-
ing environments typically involves the use of 
numerous self-regulatory processes, such as plan-
ning, cognitive strategies, metacognitive moni-
toring and regulation, emotions, and motivation. 
Unfortunately, learners do not always monitor 
and regulate these processes during learning 
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  Abstract 

 This chapter emphasizes the importance of using multi-channel trace data 
to examine the complex roles of cognitive, affective, and metacognitive 
(CAM) self-regulatory processes deployed by students during learning with 
multi-agent systems. We argue that tracing these processes as they unfold 
in real-time is key to understanding how they contribute both individually 
and together to learning and problem solving. In this chapter we describe 
MetaTutor (a multi-agent, intelligent hypermedia system) and how it can be 
used to facilitate learning of complex biological topics and as a research 
tool to examine the role of CAM processes used by learners. Following a 
description of the theoretical perspective and underlying assumptions of 
self-regulated learning (SRL) as an event, we provide empirical evidence 
from  fi ve different trace data, including concurrent think-alouds, eye-track-
ing, note taking and drawing, log- fi les, and facial recognition, to exemplify 
how these diverse sources of data help understand the complexity of CAM 
processes and their relation to learning. Lastly, we provide implications for 
future research of advanced leaning technologies (ALTs) that focus on 
examining the role of CAM processes during SRL with these powerful, yet 
challenging, technological environments.      


